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Abstract A Pontryagin principle is obtained for a class of optimal control problems with dynamics
described by a partial differential equation. The method, using Karush-Kuhn-Tucker necessary conditions
for a mathematical program, is almost identical to that for ordinary differential equations.
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1. Introduction

Pontryagin’s principle has been proved in at least four ways, for an optimal control problem in continuous
time with dynamics described by an ordinary differential equation (ODE). One approach [5,6] regards the
control problem as a mathematical program, and uses the Karush-Kuhn-Tucker (KKT) necessary conditions
as the starting point (though with some different hypotheses) for deriving the Pontryagin theory. There are
various results for optimal control when the dynamics is described by a partial differential equation (PDE),
often derived (e.g. by Lions and Bensoussan) using variational inequalities, which are generally equivalent
to mathematical programs in infinite dimensions. The results in [1,2,3,4,5], and others by the same authors,
obtain some versions of Pontryagin’s principle, by quite different methods to those used for ODEs.

However, the Pontryagin theory involving a PDE can also be derived from the mathematical program-
ming approach, using the KKT conditions, and replacing the time variable ¢ by a space variable z, say in
R? or R3, or by (¢, z) combined. Whatever approach is followed requires a good deal of detailed calculation,
concerned with choice of function spaces (suitable Sobolev spaces), and proofs of differentiability properties.
These details are omitted here (they are adequately treated e.g. in [1,3], since the aim here is to show that a
Pontryagin principle readily follows. The results depend indeed on certain differentiability properties, stated
in what follows, but only indirectly on how these properties are achieved.

2. Pontryagin for ODE
Consider first an optimal control problem with an ODE:

MIN J(u) := F(z,u) := /T Fz(t),u(t),t)dt subject to

z(0) = @g, z(t) = m(x(t),u(t),t) , u(t) eT()(0<t < T) (1)

Here x(.) is the state function, u(.) is the control function, the time interval [0, T] is fixed, f and m are
differentiable functions. Other details such as variable horizon T, an endpoint constraint on z(7'), and state
constraints, can readily be added to the problem. They are omitted here, since the purpose is to show the
method. The steps are as follows:

(a ) The problem (1) is expressed as a mathematical program:

MINgex uevJ (u) i= F(z,u) subject to Do = M(z,u),u €T, (2)

over suitable function spaces X and U; X is chosen so that the differential operator D := (d/dt) is a
continuous linear mapping Vot 1 |

( b ) Assume temporarily that F and M are differentiable with respect to (x,u). Then necessary KKT
conditions for a minimum at (z,u) = (Z, ) are:

F,(%,@) + (=D + M,(7,a) =0, (3)
(Fu(z,a) + AM, ( z,a)) (T —a) >0, (4)
with a Lagrange multiplier A Represent A by a function 5\(), where
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T
(Vvwe C[0,T] <Aw >=/ A(t),w(t)dt . (5)
0
Define the Hamiltonian

h{z(t),u(t), t, \(t)) := f(x(t),u(t), t) + At)m(z(t),u(t),t); (6)

and

H(z,u,\) := F(z,u)+ 5\M(.L, u) = /(;T h{(z(t),u(t),t, X(t))dt. (7

In what follows, differentiability will be assumed only with respect to @, not u, so that (4) is not available.
The multiplier A remains, satisfying (3), provided that the operator (—D + M, (Z, @) is assumed surjective.
(¢ ) Integrating by parts the —AD term in (3) leads to:

_D’_\ = (F + ;\*]E[)iﬂ(‘f”a)a (8)

if the integrated part vanishes. Choosing a boundary condition to do this, the adjoint differential equation
is obtained:

=X() = ha (2(t), (1), A(8)) , M(T) = 0, (9)
(d ) Assume that Dz = M(z,u) defines x as a Lipschitz function of u, and that V¢ %;

F(z,u) = F(Z,u) = Fp(2,1)(z = ) + o( ||z — Z[| + [lu — al), (10)

with a similar requirement for M. Then minimality of (Z, %), namely that F(z,u) — F(z,u) > 0, with (3),
leads (see [7, Theorem 7.2.3]) to:

H(z,u,}) — H(7.8,8) = F(a,u) = F(20) +o(u—a]) > o (Ju—1]) . (11)

describing a guasimin (see [6]) of H(Z, ., ;\) over I'(.) at @. (Note that there is no requirement of convexity
onI'(.).)

(e ) Assuming that @ is a minimum in terms of the L' norm, suppose if possible that

B(E(t), u(t), t M) < h(2(t),a(t), t, (1))

for t in a set of positive measure. Then Vot 3

(see [ 7, Theorem 7.2.6), for which

a set of control functions {ug (.) : § >0} C I is constructed

H(z,u, 5\) — H(z,u, ;\) < c|lu—ull (12)

for some constant ¢ > 0, thus contradicting (11). (A required chattering property holds automatically for
the considered control constraint.) This has proved Pontryagin’s principle, in the following form:
Theorem . Let the control problem (1) reach a local minimum at (z,u) = (Z, @ with respect to the L'-norm
for the control u. Assume that the differential equation Dz — M (z,u) determines x as a Lipschitz function
of u, that the differentiability property (10) (with respect to z) holds, and that (—Dy (Z, @) is surjective,
Then necessary conditions for the minimum are that the costate A(.) satisfies the adjoint equation (9), and
that h(Z(t),.,t,A(t)) is minimized over I'(¢) at @(t), for almost all ¢.

3. Pontryagin for an elliptic PDE
Denote by © a closed bounded region in R? (or R?), with boundary 9, and disjoint sets 4;(i = 1,2,3,4)
whose union is 9Q. The optimal problem considered is:

MIN z(.),u(.)J (u) := Lf(w(z),u(;),z)d; (13)
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subject to

(Vz € Q)Dz(z) = m(z(z),u(z),z) , (14)
(Vz € A1)z(z) = o(2) ; (V2 € A2)Va(z)).n(z) = go(2); (15)
(Vz € Qu(z) eT(z) . (16)

Here D is an elliptic linear partial differential operator, such as the Laplacian VZ, and n = n(z) denotes
the outward-pointing unit normal vector to 9 at z € Q. The constraint on the control u(z) is specified in
terms of a given set-valued function I'(z). The precise way in which z(.) satisfies the PDE (15) need not be
specified here; instead, some specific properties of the solution will be required. The function spaces must
be chosen so that D is a continuous linear mapping. This holds, in particular, for D = V?, with Sobolev
spaces, if v € W§(Q) and u € Wi (Q). It is further required that (14) determines z(.) as a Lipschitz function
of u(.). The boundary 99 of the region need only be smooth enough that Green’s theorem can be applied
to it.
The Hamiltonian is:

h(z(z),u(z),z,A(2)) == f(z(2),u(z), 2) + A(z)m(z(2),u(z), 2); (17)

The steps of Section 2 are now applied, but replacing ¢ € [0, T] by z € Q. It is observed that steps ( a), (b),
(d) and (e ) remain valid — they do not depend on ¢ € R . Step (¢ ) requires a replacement for integration
by parts. If D = V2, it is appropriate to use Green’s theorem in the form:

/ A\VZz — 2VZ\]|dv = / A0z /On) — x(OX/On] ds , (18)
Q [5/9]

in which dv and ds denote elements of volume and surface. The right side of (17) beomes the integrated
part ; the origin can be shifted, in the spaces of functions, to move z(z) = z¢(z) to z(z) = 0, and a similar
replacement for the normal component (Vz(z)).n(z).; so the contributions to the integrated part from A,
and A, vanish already. the remaining contributions vanish if boundary conditions are imposed.

A(z) =0 on A3;0\/0n =0 on Ay (thus VA(z).n(z) = 0 on A4) (19)
Then (3) leads to the adjoint PDE:

D*A\(z) = Oh(x(z),u(z), z; X\(2))/ 0z (=), (20)

with boundary conditions (19), where D* denotes the adjoint linear operator to D. Here, with D = V2, (17)
shows that D* = V? also.

Then (¢ ), with z € Q replacing t € [0, T], gives Pontryagin’s principle in the form: h(#(z),.,t,A(z)) is
minimized over I'(z) at @(z), possibly except for a set of z of zero measure.

If f and m happen to be linear in u, and if I'(z) is a polyhdron with vertices p; (or an interval if
u(z) € R), then Pontryagin’s principle may lead to bang-bang control , namely u(z) = p; when z € E; , for
some disjoint sets E; C (2.

4. Pontryagin for a parabolic PDE
Now consider a control problem with dynamics described by the PDE:

Ox(2,t) )0t = *V2x(2,t) + m(x(z,t),u(z,t), 2, t) (21)

where V2 acts on the variable z. Here t (for the ODE) has been replaced by (t, z) € [0,7] x €, for a
closed bounded region Q C R’ , and m(.) is a forcing function. Define the linear differential operator
D := (8/8t) — ¢?V?2 . The function spaces must be chosen so that D is a continuous linear mapping. Define
A; C 09 as in section 3. The optimal control problem now becomes (with a certain choice of boundary
conditions):



T
MINI(_),H(_)J(U) :=/ /f(m(z,t),u(z,t),z,t)dtdz (22)
o Jo
subject to

(Vz € Q)Dz(z,t) = m(x(z,t),u(z1),t,2) , (23

(Vz € A))(Vt € [0,T))z(z,t) = wo(z,t) ; (Vz € Ax)Va(z,t)).n(z) = go(,1); (24
(Vz € 0Q)x(z,0) = by(2) (25

(Vz € Qu(z,t) €T (z,1) . (26

Then steps (a ), (b ), (d), (e ) proceed as in section 3, for an elliptic PDE. The Hamiltonian is:

ha(z,t),u(z,t), 2, t, Az, 1)) =
Fx(z,t),u(zt), 2, t) + Az, t)m(z(z, 1), u(z,t), z,t); (27)
Step (¢ ) (integration by parts) is replaced by the following (denoting I := [0,7] and 6 := (9/0¢)) :

—ADz = — // t)dzdt = // )0 — V2] (z, t)dzdt
- / dz / (OA (2, ) (=, )t + / / (V2A(2 ), £)dz, (28)

applying integration by parts to § and Green’s theorem to V2, provided that the "integrated parts” vanish.
Since x(z,t) is given for ¢t = 0, and for z € A; U Ay C 09, it suffices if

(VZ))‘(Z’ T) =0, (29)
so that [, [A(z,t)z(xz,t)]f =0, and if

(Vt € [0, T])A(z,t) = 0 on As; Va(z,t.n(z,t) =0 on Ay . (30)

With these boundary conditions, the adjoint PDE becomes

—(0/0t)A(2,t) = *V2A(2, ). (31)

Then (e ), with (z, t) € Qx I replacing t € [0, T], gives Pontryagin’s principle in the form:
h(Z(z,t),.,2,t,A(2,t)) is minimized over I'(z) at @(z,t),

possibly except for a set of (z,t) of zero measure.
Concerning bang-bang control, a similar remark to that in section 3 applies here also.
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6. Appendix
Note 1. The linear mapping D is continuous if x(.) is given a graph norm :

el := ll«l™ + | D],

where ||z||*denotes a given norm, such as ||z||s or ||z]|2-
Note 2. Tt follows from Gronwall’s inequality that the mapping from w (with L; norm) to « (with Ldn6oo
or Ly norm) is Lipschitz if m(.) satisfies a Lipschitz condition. The differentiability property (10) replaces
the usual F,(Z,u) by F(Z,u). This holds (using the first mean value theorem) if f and m have bounded
second derivatives.

Similar results are conjectured for the case of partial differential equations.
Note 3 The construction depends on the (local) minimum being reached wheh u has the L; norm, and on
the constraint (Vz)u(z) € I'(z) having the chattering property , that if v and v are feasible controls, then
w is a feasible control, defining w(z) = u(z) for z € Q; C Q and w(z) = v(z) for z € Q\Q;. For section 4,
substitute (z,t) for z here.



