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Global invexity is characterized by a condition which is independent
of the scale function describing the invexity. Consequently, weak
duality holds for the Wolfe, or Mond-'weir, dual problem when a
sufficient invexity hypothesis is replaced by a suitable ineguality
condition. This holds exactly when the ‘Wolfe dual is eguivalent to the
Lagrangian dual. Results are given for differentiable, and for 1locally
Lipschitz, functions.
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1. Introduction

The ey property (see Hanson (1980), Craven (1981a), and
Craven {1995) of a vector function has more often been postulated,
than shown to hold, for some class of constrained optimization
problem. Conditions for jacsd fsvexiiy (thus, invexity in a local
domain) were obtained in Craven (198 1b), by quadratic approximation
of the function. Such canditions extend anly until some parabola has a
turning point, and so cannot provide a candition for global invexity.
Moreover, the class of guadratic functions that are invex but not
convex 15 quite restricted. So another sort of approximation is
required.

The differentiable vector function F : RN = RM is {globally)
Fexrat p = RN if, for some differentiable sosfe fuscdio
T : RN = RN = RN,

(Wwx = RN) Fix) - Fip) = F'iplnix,p). (1)
The gradient F'{p) is a m=n matrix, with m < n. Since nip,p)is
normally zero, the scale function (at given p) may be written as
wix-p,pl. Expand wix-p,p) = Cix-p) + of]|x-p|}, where C is linear, and
set w=p+owy for fiked v and o« = R. Then, from {1:
(Wee=R) Fripley + o) = FrpiiCay + ol .

Hence F'{piCix-p) = 0; thus the term (C-I){x-p) may be subtracted from
wix-p,pl. S0 it can be assumed (see Craven (193101 that nix-p) = »-p

+ of|=-p|>.
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It is observed that a function may be invex at one point, but not

at other neighbouring points. An example is f: B = R given by
fix) = -xZ, Invexity at p=0 would require that (%) -x% = -0.w(x), which
is contradicted. However, invexity at p=0 requires that (setting z=x-pl
~2pz-z2 = (-2pdz+wiz)), thus that wiz) = (2p)~ 122 ; and similarly for
p=0. Thus f is invex at gach point p=0, but the scale function becomes
unbounded as p—=0.

Invexity is often used for minimization problems, where fix) :=
Fi(x) is minimized over » = RN, subject to constraints gjlx) := Fyix) = 0.
If a minimum is reached at ®=p, and a constraint qualification holds,
then Karush-Kuhn-Tucker (KKT) conditions hold, that

Fripd+ 2j=1 piFj'tpd =0, pjz 0, pjFilpl = 0 (j=1). (2)
Thus F'ip) does scd have full rank. If Fis inves, then KKT is sufficient
for a minimum. This suggests studying invexity under the restriction
that F'(p) has rank m-1. It is useful to assume a further restrictian,
that each multipler pj = O, thus excluding cases where both pj = 0 and

Fitp) = 0 for some j.
Invexity is also applied to dual problems, containing
constraints of the form
Fiwd + =1 piFyix) = 0, pj = O (3)
It is relevant also here to consider invexity under a rank restriction on
Fris).

2. Invexity is a second-order property
If Fand w are twice-differentiable, then they have Taylor
EXpansions
F(x) = F(p) + F'(piix-p) + F¥ {x-p;p) ; (4)
wix) = wip) + wipiix-p) + w (-pmp) ;
in which the higher-order terms satisfy F¥ (x-p;p) = of||x-p[rand
w™ (x-p;p) = of[|x-p||). Substituting into the definition of invexity,
Thvexity at p is equivalent to:
(W) F¥0-pspd = Friphw™ (i-psp) (5
Hanson and Mond (1957} also considered a variant of fsser (called
feie £ imvey ), defined (in present notation), for F = (f,g), by
(WxeERN) f(x) - flp) = ' iplwix-p;pl;  -glp) = g'(pluwixl. (&)
Denote &(x) = (fx) - fip), glx)). Then this variant of invex is equivalent
to:
(wxl  ip)+ 27 (x-pipd = & pIw™ (x-pp) . (7]
This property implies (see Hanson and Mond (19587 that a KKT point is

a minimurm of f(x), subject to gix) = 0, since 0 = gix) = g'(plwix-p;pl,
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hence for some multiplier & = 0,
fix) = fip) = T {phwlx-p;pi = -2 T g (phw(x-psp) = 0. (33

3. Characterization
The following characterizations can be given for the invex
properties (5) and (7).

Theorem 1 F 75 fsvay s 0 77 8655 anie 77
[02 o e RM, «TFip) =0l % «TF™(x-p;pl 2 0. (9)

w™ (x-p;pi, and
(z,t),

Proof Forafixedx = RN, set & := F¥(x-p:p) and © :
set M:= F'ip). Then, substituting £ = 2/t, and then u :
(5)s (ALME = o

# (Jz=RN, teRI Mz = t8, t = 0

2 (u RN Ku=0,Nu<0 where K := [M,-8], M= [0,-1]

SNOT (3 =R+M 3L eR) wlK+EN=0,x=0,02f=0

by Motzkin's alternative thearem

£ NOT (Joc = BeM) M =0, 0=z ld =0

e0zesRM xTM=0]2xlaz0. ]
Remark 1 Glover (1935) gave a similar result, but referring to Fix) -

F{0) instead of F¥{x-p;p). The point p in the theorem is not always a
EET point, because the complementarity slackness condition was not
assumed. It 15 assumed in the next theorem.

Theorem 2 £ :=/7.0) hes the modified imvey praperiy 17 &t g 77 snd
R i oo f F Pt e—pan ) 2 0 WSEREVES [T I8 F ART poind, Witk ! T FTE
S REAiEr o = LA For il sticn aff F) suliject to gl ) = 0
Proof Fora fixed x = RN, set @ := ¥ (x-p:p), € 1= w¥{u-ppd, M = &°(p),
and ¢ := #(p). Then, as in the proof of Theorem 1,
(P i3 Misc+e = (38 -Mi+a eRM -
= (JzeRN, teR) -Mz+to eT:=cone{ Re4M-), t =0
£ (qu = R -y = T, Mu < 0, where K := [M,-8], M := [0,-1]
SNOT (A =R+, AP =R) K+ EN=0,x=T*, 0= f=0
by Motzkin's alternative theorem, where the dual cone T*
of T is characterized by o = T* €[ o = B+M, ¢ = 0]
£ NOT (A = R.M, elc=0) oTM=0, -xTé-L=0,0=2pz0
SleeRMelc=0, «TM=0]3uTéz0, ]
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4. The Wolfe dual
The Wolfe dual for the minimization problem:

MIN fix) subject to glx) = 0, (10]
(with f : RN = R and g : RN = RM differentiable, m = n) is the problem:
Maes fiu) + wTglu) subject to v = 0, () + vTg'(u) = 0. (113

Let F := (f,g). It is well known that duality holds if a constraint
gualification holds, and if F 15 invex at each point.
Theorem 3  Forasod Fassifie point fvt For 1 1 sssume tst g
s Pl ey, et = snd

(%Wz) fiz)+vTgiz) = flu) +vTglu). (12}
Thes (0.0 ix fvex & i vl sad Wesk ausiity folas Foae ) sad ffrL
Remark 2 Condition {12} also follaws fraom invexrity, so that Theorem
3 gives a necessary and sufficient condition.  Paoints (z,v) with z = u
are not feasible for {11,

Define the Lagrangian L{z,w) := f{z) + wTg{z). Under the
hypotheses of Theorem 3, if u satisfies Karush-Kuhn-Tucker necessary
conditions for (10), then L satisfies the saddlepoint property:

(z) ("Ww = 00 L{uw) = Liu,w) = Liz,w) .
(The 1eft inequality follows from w = O, glu) £ 0, and vTg{u) = 0.}
For fixed v, denote ¥(z) := f{z) + vTg{z). Since ¥'(u) =0, (12)is
equivalent to the second-order condition
(Fz) ¥ (z-uud = 0.

Under hypotheses of Theorem 3, The Wolfe dual (11} is equivalent to
MaRyy MINz fz) + vTglz) subject tov = 0, (W) + vTgwy = 0. (13)
Since, given invexrity, i) + vTgl.) is minimized when £7{u) + vTg'(u) = 0,

problem {13} is equivalent to the Lagrangian dual to (P}, namely:
M&xy=n MINZ TE2) + wTgiz) . (14)
Proof Let (u,v)be feasible for (11). Since g'tu) has full rank, there is
no other feasible point (u,w') with v = v, Now
[1 wTIF®iz-uud = [1 wTIF(2) - Flu) - Friud(z-u})
= [1 wTIF{z) - F{u)) -0
from a constraint in{(11)
= [fiz) + wTgiz)] - [fiuy + vTgiuil. (15)
In order to apply Theorem 1, 1et o satisfy:
el = [EwTlz [0 0]and [¥ uT][f’(u}] =0
g'{ul
If # = 0 then wTg'(u) = 0, hence v = O since g'(u) has full rank; so f{u) =
0, contrary to hypotheses. S0 % = 1 may be assumed. Then
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[1 wTIFuwi=0= [1 wTIF¥z-wu =z 0
if and anly if

fluy+wlTgiuy=0 3 fiz)+vlgizd = flu) + wTglul.
Then, by Thearem 1, (f,g) is invex at (u,w) if and only if (12} holds; and
Thvexity is sufficient for weak duality. []

Remark * The Mond-weir dual for {10} is the problem:

Max Tlu) subject tow = 0, F{u) + vTg'(u) = 0, vTglu) = 0. (16)
& proof similar to that of Theorem 3 shows that the hypotheses of
Theorem 3 are also sufficient for duality of (103 and (16).

2. Locally Lipschitz functions

Suppose now that F is locally Lipschitz at p, but not necessarily
differentiable there. If £ = 3F(p) (the Clarke generalized Jacobian of F
at p), denote F™{x-pip;#) := F(x) - F{p) - Z{x-p). Now F has been defined
in Craven (1986) to be gesersiiced fmver at p if 1(.,.) exists so that

(FE& = BF(p)) Fix) - Fip) = Eix,p).
This is equivalent to the following analog of the condition (3):
(W& = 3F(p) F7u-pipsdd = 2™ (w-pp) . (17)

Mote that wix-p,p) := nix,p) is still assumed differentiable.

The Wolfe dual for problem (P) now becomes:

MIM f{u) + vTgiu) subject to v = 0, 0 = a(f + wTgiu) . (18]
Theorems 1 and 3 now generalize as follows to the locally Lipschitz
CasE.

Theorem 4 F is gassrsfined inves st o 75 snd Saiy 77
(VE=OF(p) [0zec e ReM el2=0] 2wl F x-mp&) = 0. (19)
Proof As for Theorem 1, replacing M by £ and F*(x-p;p) by F*(n-pip3 &0,

Theorem 5  For &850 Fessitlfe poind {i ! For i 3L sasume thad esch
Elemmetrl aF Forl) s FiF reni, 0 &35k and
(%wz) f{zi+vTgiz) = fiu) + vTgu). (20)
Then F := (f,q) is invex at (u,v); and weak duality holds for (10} and
(130,
Proof If £ = 3F{u), then
(1 wTIF®iz-ususey = [1 wTIF{z) - Flu) - &{z-ul)
= [1 wTlF(z) - F{u)) - 0
since (u,v) is feasible for (18)and £ =0

= [f{z) + wTglz)] - [fiu) + wTgiul].

Jupposge that
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el i= [ wT]z=[0 0] and [8 vT]Z = 0.

The case @ = 00 is excluded by the hypothesis that each element of dgiu)
has full rank. 5o % = 1 may be assumed. Then

(ez0and el & =002 ol F¥(z-wud) = 0
hiolds if and only if

G o= 3F + wTghul = [fiz) + vTglz)] = [fiu) + wTglull.
From Theoremm 4, the Tatter condition s equivalent to generalized
ihvexity of F, and so implies weak duality. []
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