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Abstract Constrained optimization is studied, with nonsmooth (Lipschitz) functions in abstract spaces and
cone-constraints. Some more general Lagrangian necessary conditions are obtained, using strict minimum and
approximation methods. These conditions are sufficient for a minimum under generalized invex assumptions.
A characterizationis obtained for generalized invexity, generalizing a known result for differentiable functions.
Generalized invexity happens exactly when the generalized Wolfe and Lagrangian dual problems coincide.
Classification : 90C26, 90C48.
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1. Introduction

Cousider a constrained optimization problem with nonsmooth (Lipschitz) objective and constraint func-
tions in abstract spaces, and cone-constraints. The objective function may be scalar or vector. Lagrangian
necessary conditions for a minimum are well known, under various assumptions. Here some more general
necessary conditions are obtained, using an approximation method when the minimum is strict. Vector
duality results follow, under #nvexity assumptions.

Many authors have obtained duality results, assuming invezity, but have left open the queestion of when
invezity occurs. For the case of differentiable functions and finitely many constraints. Craven (2002) gave
a characterizartion of invezity, thus describing this property without needing to specify the scale function n
occurring in its definition. Craven (2005) extended this result to abstract spaces, relevant e.g. to optimal
control.. This characterization is now extended to generalized invezity (for which see Craven, 1986) for
nonsmooth (Lipschitz) functions in abstract spaces. A consequence is that the combination of objective
and constraint functions is invex exactly when suitable generalizations of the Wolfc dual problem and the
Lagrangian dual problem coincide.

2. Formulation
Counsider the optimization problem
WMIN F'(z) subject to — G(z) € S, (P)

in which X and Y are Banach spaces, Z =R",F : X - Z and G : X = Y are locally Lipschitz functions,
QQ C Z and S CY are closed convex cones with interior, and WMIN means weak minimum with respect to
@, thus p is a weak minimum of (P) if

—G(p) € S and F(z)— F(p) € W := Z\(— intQ)

whenever —G(z) € S and z is in a neighbourhood of p. The minimum is global if the neighbourhood is all of
X.

If F and G are Fréchet-differentiable functions, then necessary Karush -Kuhn-Tucker ( KKT ) conditions
for a weak minimum of (P) at p (where g(p) € S) are:

(F0£T7e€Qt , A€ ST) TF'(p) + AG'(p) = 0,AG(p) = 0, (K1)

where St is the dual cone of S (the set of dual vectors s for which s7(S) C R4 , and Q7 is the dual cone
of Q. If the function ® := (F, G) is invex at p with respect to the cone K := @ x S for some scale function
n, thus if

(V2 € X) @(2) - 2(p) € K + &' (p)(z.p). (Lz1)

then (K1) is also sufficient for a weak minimum at p.
Instead of differentiable, suppose that F' and G are locally Lipschitz, thus

(3 < 00)(Yu,0) €N [[F(u) = F(0)]| < flu— o]
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where N is a neighbourhood of p, and similarly for G. Various special cases are known where necessary
conditions for a weak minimum are:

(F0#£7€Qt, AeST) 0€d(7F + AG)(p), \G(p) =0, (K2)

in which @ denotes Clarke subdifferential , or the weaker condition:

(30£7€Qt, A€ ST)0e€d(TF)(p) + 0(\G)(p), \G(p) = 0. (K3)

In particular, Clarke (1983) proves (K2) when X and Y have finite dimensions, Z = R, S = R’ . Some
constraint qualification in required in order to deduce 7 # 0 . Craven (1986) proved (K2) when X and Y
have finite dimensions and Z = R , but with a general closed convex cone S.

The proof was based on smoothing the Lipschitz functions, which requires X of finite dimension; however,
the assumption of finite dim (}7) was not actually used.

The following questions arise. When does a version of ((K2) or (K3) hold for (P) with Lipschitz functions,
when X and Y have infinite dimensions, and S is a general convex cone with interior, not necessarily a
polyhedral cone? When can 9(AG)(p) be replaced by A\0# G (p), when 9% G (p) denotes some version of
generalized Jacobian 7 In finite dimensions, Clarke (1983) defines the generalized Jacobian as the convex
hull of the set of gradients G’(«x) at differentiable points  — p. This requires the differentiable points to be
dense in a neighbourhood of p, which follows from Rademacher’s theorem when dim (X)) is finite. When is
some analog of generalized Jacobian available in infinite dimensions?

Moreover, what version of invez is applicable to the nonsmooth problem? In finite dimensions, G :
X — Y may be defined as invez at p (with respect to cone S) if:

(V) G(z) — G(p) € S+ < 07 F(p),n(z,p) >:= S + Upeo® p(py < vsn(z,p) > (I22)

(S-convez is the case when n(z,p) = z — p.) If e € int S, then S} := (s € ST :< sT,e >=1} is a base for
ST (thus each element of ST has the form ab for some o > 0 and b € SI" ), where SI" is convex and weak *
compact, by Peressini (1967), Proposition 4.8. Denote by S;’ the set of extreme points of SI" . Then (Ix2)
is equivalent to the following generalized invezr (Craven 1988):

(Vz)(Vb € S7) bG(x) — bG(p) > ObG)(p)n(z.p))- (Lx3)

The following Alternative Theorem from Glover (1982) is required, generalizing Motzkin’s Alternative The-
orern.
Theorem 1 (Glover) Let ¢ : X — Y be S-sublinear (S-convex and positively homogeneous) and continuous
(or weakly @Q*—lsc), and let ¢ : X — R be R4 —sublinear. Then exactly one holds of

(i) (JzeX ) —¢(x)>0,—¢(z) €S, and

(i1 ) 0 € el [ 9(0) + Uyeqr A(si) (0)]
3. Approximation when the minimum is strict

With F,.G,Q, S as in (P), and (F, G) invex (Ix2) at p, with cone ) x S, but locally Lipschitz (not
always differentiable), does a weak minimum of (P) at imply a minimum of 7F, for some multiplier 77 This
follows from (K1), for a differentiable problem. It also follows from Craven (1986) when X and Y have
finite dimensions. But the general question has been open. It can be approached by approximating an
infinite-dimensional problem by a finite-dimensional problem, assuming a strict minimum. of the objective.

Assume here (subject to later construction) that suitable (closed convex) 9% F(p) and 9% G(p) exist.
From invex at p,

(V2)(3n) (3m = m(z) € ¥ F(p),q = q(¢) € QT ) F(a) = F(p) = g+ mn ;
(V2)(3n) (3n = n(z) € 0¥ G(p),s = s(x) € S* ) F(a) = F(p) = g+ mn .
Then p is a weak minimum of (P)
& (NOT 3z ) F(z)— F(p) € —int Q,G (x) € -S,
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& NOT (In,m € 0% F(p),n € 9% G(p),q € QF, s € ST)
g+mn€—int Q,G(p)+s+nne -5
— NOT (3,m,n) mi € — int Q,G(p) + i € =5,
= (30£7€QMAeST ) rm+In=0,AG(p)=0

by Motzkin, under the a closed -cone assumption
(see Craven (1995) that n*(S + G(p)) is weak * closed,
where n* denotes adjoint mapping of n

= (Vo,—G(z) € S ) 7[F(z) — F(p)] > (F + AG)(z) — (TF + AG)(p)
> (rm+ An)n(z,p) =0 by the invex assumption.

Hence a nonzero multiplier 7 € Q7 exists, such that 7F(z) reaches a minimum over —G(z) € S at p.

It remains to construct suitable generalized Jacobians for problems with infinite dimensions. Assume
now that (P) reaches a weak minimum at p, and dim(X) = co. Assume now that the constrained minumum
of 7F(.) is strict, thus for sufficiently small > 0, there exists §(r) > 0, such that

(=G(z) € S |lz —pll =r) TF(2) = TF(p) = 6(r).

Now specialize X to Hilbert space of sequences z = {z',z%,2%,...} with norm ||z|| = (3 w;(z")?)"/2 .

Denote by X,, the subspace of X, obtained by setting components x; to 0, for all 7 > n. Denote
by (P,) the truncated problem, obtained from (P) by adjoining the constraint x € X,, Let F" (x) :=
F(z',2%,...,2™,0,0,... ), and similarly for G™ . Assume (by choice of weights w; ) that

(i) f™"(x) and g"(x) are uniformly continuous in (x,1/n) in a bounded region around (p,0), and that

(%) f™(.) reaches a minimum on each closed bounded set.

From Craven (1995), the strict minimum, with (4) and (%), ensure that (P,) reaches a minimum at a
point p", where p” — p as n — oo, and (KKT) holds with 0 € 9(7f™ + A"G™)(p"). (See Craven (1988) for
proof of these (KKT) conditions, assuming dim (X™) < oo, The discussion of strict minimum and p"™ — p
in Craven (1995) assumes dim (Y') < oo, but that hypothesis is not used.)

Now normalize the multiplier vector (1, A" ) to v := a,(1,A" ), with «, so that < v",e >= 1. By
weak * compactness of the base S;,v" tends to a weak * subsequence limit v = (v, ) # (0,0) as n — oo.
Similarly, the elements of 6#F”(p”) and 6#G”(p”), being weak * bounded, tend to weak * subsequence
limits as n — co. These limit sets now define 6% F(p) and 0% G(p).

Assume the constraint qualification:

0 €int {G(p)+ < 07 G(p), X > —S}. (CQ)

Hence 0 € int [< O(AG)(p), X > —R4], which is contradicted if A = 0, implying v # 0.
The following theorem has thus been proved.

Theorem 2 Assume that
e the function (F, ) is locally Lipschitz and invex (Ix2), with 0% F(p) and 0% G(p) defined, as above,
by subsequence limits;
e the problem (P), with X a Hilbert space, reaches a weak minimum at p, with multipliers 7, ;
e the constraint qualification (CQ) holds.
e 7F(.) reaches a constrained a strict local minimum at a point p;
e the closed-cone assumption holds;
e the hypotheses (7) and ) hold, relating to truncation of infinite dimensional problems;
Then necessary and sufficient conditions of form (K3) hold for a weak minimum of(P) at p.

4. Vector duality
In this section, assume that (P) reaches a weak minimum at p, and that necessary conditions (K3) hold

there. Assume also that F' and G are invex (as (Ix2)) at each point, with the same 7. Following Craven
(1989), with WMAX & meaning WMIN (—®), the modified Wolfe dual is:
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WMAX, v F(u)+ VG(u) subject to V(S) C Q,
(Jo € OF (u))(3w € 0G(u)) (0 +Vw)(X)C W. (MWD)
The dual variables are u € X and the continuous linear mapping V.

Theorem 3 Let F' and G be invex , with respect to the same scale function 7. Let (KX3) hold for a point p,
with —G(p) € S. Then there hold:
weak duality ( WWD ): If u is feasible for the given problem, and (u, V') is feasible for the dual problem,
then F(z)— [F(u)+ VG(u)l € W .
Zero duality gap (ZDG) The objective functions are equal at p, thus:
F(p) = F(p) + AG(p).

Remark WWD indicates weak duality (as for scalar-valued optimization problems) in relation to weak mini-
mum and weak mazrimum.
Proof Let z and (u, V') be feasible for the respective problems. Then

F(z)— [F(u)+ VG(u)] = =VG(z)+ [F(z) + VG(2)] — [F(u) + VG(u)]
EQ+(F+VGE) (u,n(z,u))+Q by invexity
CRQ+(c+Vw)(X)CQ+W CW.

So WWD holds; and ZDG follows from (K3).

5. Characterizing invex

A characterization of inves was given in Craven (2002) for differentiable functions. Characterizations
for locally Lipschitz functions are obtained as follows.

Consider a locally Lipschitz function H : X — Y, with convex cone S C Y and int S # (). For each
be A:= S, define H(z) € C(S;) by H'z)(b) := bH(z), and define M{n) € C(S;) by

M(n)(b) := (bH)"(p; ).

Then M () is P—sublinear , where P is the positive cone (of pointwise nonnegative functions) in C'(S;' ).
The elements of the dual space of C (S, ) are (regular Borel ) measures on C(S; ) (see e.g. Taylor, 1958,
section 7.5); denote the space of such measures by M. If dim (Y') < oo, then the base S;' may be replaced
by the set S} of generators, which is then compact. Given z € X, denote ¢ := H'z) — H(p). From (Ix3), H

is tnvex at p when 7 exists (depending on x), satisfying ¢ — M(n) eP.

Theorem 4 H is invex at p for some scale function 7, if and only if, for u € M,
0eK() = [ (uldh).b{H() - Hp) 2 0

where A := S and
Ki) = [ (n(a).00H)(p).
Proof Invexity holds if and only if (for each z):
(@ é—Mm)ePe (Fz=tn t>0) M(z)—éte P,te int Ry

(1(d€). OV0)(©)), [ (u(d).c* () <0

& NOT (3peM, 0#£3€R,) OEcl/
A

A

by Glover’s alternative theorem (Theorem 1), integrating over A = S}
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& (EEM) 0K = [(u().c"®) 20.

where ¢t (b) := bé = b[H(z) — H(p)], since from (bH)°(y) = sup{< v,y) : v € d(bH)(p)} and d(¢,-) = &, the
expression for the subdifferential of a supremum in Clarke (1983, Theorem 2.8.2) shows that 9(bH)°(0) =
cl co O(bH)(p) = O(bF)(p). This Clarke theorem requires that T := 9(bH)(p) is sequentially compact, the
mapping (-, y) is usc, Lipschitz, closed, and Clarke regular, and that the sup is bounded; then

O(bH)*(y) = { / p(db)E = peP(T)} =,

where P(T') denotes probability measures on 7.

6. Lagrangian dual and invexity
Consider the problem:
MIN F(z) subject to — G(z) € S, (P2)

where F(+) takes real values, and the other symbols are as in (P), and the associated problem:
MAX @(v) subject to v € S, where ®(v) := MIN, F(u) + vG(u). (D2)

Assuming that F is convex, G is S-convex, and a constraint qualification, (D2) is the Lagrangian dual problem
to (P2.)

If the constraint —G(z) € S consists of imequalities Gj(z) < 0 (j = 1,2,...,m), denote the problems
(P2) and (D2) by (P3) and (D3.) In this case, Theorem 4 characterizes invexity of (F, G) by:

[(v,v) >(0,0), 0€ YOF(p)+ Y vj0G;(p)] = ~FF(-)+ Y vj0G;() = vF(p)+ Y vj0Gi(p). (Ixx)

Theorem 5 Counsider the problem (P3). For each point (u,v) satisfying
(i) v=(vi,v2,...)>0
(i) 0€ OF(u)+ Y vj0G;(u),
(iii) 0 ¢ > v;0G(u), when v # 0,

the function H := (F,G) is invex at (u,v) if and only if:

F(:)+ Z 0;Gj(-) > F(u)+ Z v;Gj(u). (MinLagr)
J J

Remarks Hypotheses (i) and (ii) state that (u,v) is a feasible point for the Wolfe dual problem WD2).

MAX, , F(u)+ Zijj(u) subject to (Vj)v; >0, 0 € OF (u) + Zvjan(u).
J J

Hypothesis (iii) is a constraint qualification, related to the Slater constraint qualification.

For given u,, note that 0 € YOF (p)+ Y v;0G;(p)] is often only satisfied when (v,v) = 3(1,],) for a
unique Lagrange multipliers A,, and positive values of 3.
Proof From Theorem 4, H is invex at u. if and only if (Iz*) holds. Because of the constraint qualification
(iii), the case v = 0 does not hold in (Iz*). Hence, dividing by ~, or equivalently replacing v by 1 in (/z*),
(Iz*) is here equivalent to [(i) + (ii)] = (MinLagr).

Consider now the problems (P2) and (D2) with F(-) real-valued, but without restriction to a finite set
of inequality constraints. Then K(u) in Theorem 4 can be expressed as:

K(u) =~9F(p)+0(vG)(p),
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with Lagrange multipliers
0.0)# ()= [ (@) beRy x5t
A
Then (Iz*) is replaced by:
(7:v) € Ry x ST, 0 € 70F(p) + 0(vG)(p) = 7F()+vG(:) 2 7F(p) +vG(p). (T % )

Theorem 6 Counsider the problem (P2) with real-valued objective F'(-). For each point (u,v) sartisfying:
(i) ve st
(ii) 0€ IF(u)+ O(vG)(u),
(iii) 0 ¢ 9(vG)(u), when v € ST and v # 0,

the function H := (F,G) is invex at (u,v) if and only if:

F() +vG() > F(u) + vG(u).. (MInLagr2)

Proof From Theorem 4 and the above discussion, H is invex at u if and only if (Iz**) holds. Because of the
constraint qualification (iii), the case v = 0 does not hold in (Iz**). Hence, dividing by v, or equivalently
replacing v by 1 in (Iz*¥), it follows that (Iz*¥*) is here equivalent to [(i) + (ii)] = (MinLagr2).

Finally, consider problems (P2) and (D2) with unrestricted constraints, a vector valued objective F'(+),
and weak minimization.
Theorem 7 Consider the problem (P2) with vectorvalued objective F'(-). For each point (u, v, 7) sartisfying:
(i) veSTand0#7€QT,
(i) 0€ O(rF)(u) + (G (w),
(iii) 0 ¢ O(vG)(u), when 0 £ v € ST,
the function H := (F,G) is invex at (u,v,7) if and only if:

[TF(:) + vG(:)] — [TF(u) + vG(u)] > 0. (MinLagr3)
Proof From Theorem 4, H(+) is invex at (u,v,7) if and only if:
[T € Q4+, ve ST, 0€d(7F)(p) +0(vG)(p)] = TF(:) +vG(:) > 7F(p) + vG(p). (Iz * %)

The case 7 = 0 is excluded by hypothesis (iii), so the conclusion follows.
Remarks As in Craven (1989), MinLagr3 may be expressed as a vector inclusion:

[F()+ VG()] = [F(u) + VG(u)] € Z\(—ntQ),
where the linear mapping V satisfies 7V = v, and V(S) C Q.
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