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Abstract A characterization of invez , given by Glover and Craven, is extended to functions in abstract
spaces. Pseudoinvez for a vector function coincides with invez in a restricted set of directions. The V-invex
property of Jeyakumar and Mond is also characterized. Some differentiability properties of the invex scale
function are also obtained.

1. Introduction
A differentiable vector function F is invezx at a point p if

F()—=F(p) = F'(p)n(.,p)

for some scale function 1. Asis well known, with this property necessary Lagragian optimization conditions
are also sufficient, and various duality results hold. It is important to find when the invex property holds.
This paper extends the characterizations of invez given by Craven and Glover (1985) and Craven (2002) to
also characterize V-invez (Jeyakumar andr Mond, 1992), and to show that a related pseudoinvez property
of a vector function concides with snvex in a restricted set of directions. Differentiability properties of the
scale function can also be characterized.

2. Characterizing invex
The differentiable vector function F': R™ — R™ is (globally) nvez at p € R™ if, for some differentiable
scale function n: R" x R — R" |

(Ve e R" ) F(x)— F(p) > F'(p)n(z,p) - (1)

If F and w are twice-differentiable, then they have Taylor expansions

F(z)=F(p)+ F'(p)(z —p) + F¥ (¢ = pip); w(z—p)=n(e,p)=z—p+w? (xp)
Substituting in the definition of invexity, invexity at p is equivalent to
(Ve € R" ) F* (x-pip) > F'(p)w® (x-pip) - (2)

This is applied to an optimization problem:

MIN Fi(z) subject to Fj(z) <0 (j=2,3,... ,m). (3)

Here, F is called active-inves (a-invez ) at p if Fy(p) = 0 (by replacing F(.) by Fi(.) — F(p)), and FA (),
obtained from F(.) by omitting those components F; for which F; (p) # 0, is invex at p. If o is a vector of
Lagrange multipliers, with oy = 1, then the Lagrangian:

L(z):=a"F(z) = o (F(z) -F(p) — F'(p)(x —p)) =" F* (x-pip) (4)
if L'(p) = oTF'(p) = 0.

Consider, more generally, an optimization problem:
MIN F(z) subject to G(z) := (Fa(z),...,Fm (x)) € -S, (5)
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where S is a closed convex cone. Let E C R" . By definition, F(.) is invex at p on E with respect to the
convex cone U := Ry x S if:

(In:R"xR" - R") (Ve € E) F(z)— F(p)— F'(p)n(z,p) € U, (6)

or equivalently if:

(Ve € E ) F¥* (x-pjp) — F'(p)w* (x-pip) € U. (7)

(Note that this definition restricts the set of points « for which the invex property is considered. If E is not
stated, then £ = R" is assumed.)

For problem (5), F is called a-invezr at p if Fi(p) = 0 and F is invex at p with respect to the convex
cone UA := {v(u+ F(p)) : u € U,y > 0}. This reduces to the previous case when S = R7~! . The dual
cone of U is denoted by U*; then the dual cone of U4 is U** = {u* € U* : w*TF(p) = 0}.

The characterization of inver depends on the following consequence (see Craven and Glover, 1985;
Craven 2002) of Motzkin’s alternative theorem. It is stated here in abstract spaces, so that it may also be
applied to optimal control problems.

Theorem 1 (Characterization) Let X and Y be normed spaces (or lctvs); let M : X — Y be a continuous
linear mapping; let V. C Y be a closed convex cone; let # € Y; let the convex cone K*(V*) be weak * closed,
where K™ is the adjoint of K := [M,—6] , and V* is the dual cone of V. Then:

A X5 X)-M(+0eV e
0#acV al=0]= [0 £acV" <ad>>0]} ()
Proof For a fixed z € R" , set § := F# (x-p;p) and ( := w# (x-p;p), and set M := F’(p). Then,

(30) - M(+0eV
& (FzeX)—Mz+theV,t€ int Ry
substituting ¢ = z/t,u = (z,t)
& (FueX xR)-Ku €V, -Nu € int Ry where N :=[0,—1]
S NOT(Fa eV, IBeR )" K+BN=0,0> 0,0£3>0

by Motzkin’s alternative theorem, since K*(V*) is weak * closed

& NOT (3o e V™) aM = 0,0 #< a,0 >< 0
& [0 £FaeViaM =0 =< a,0>>0. //

Theorem 2 In the differentiable optimization problem (5), F is invex [resp. active-invex] at a point p
(where Fy(p) = 0) satisfying o € U,a” F'(p) = 0 [resp. « € U,a” F'(p) = 0, F(p) = 0} if and only if, for
each z,a” F# (x-p;p) > 0, provided that the cone

[F'(p), —F# (¢ — p;p)]"(U”) [resp. [F'(p), —F# (= p;p)]" (U]

is closed. This condition holds automatically for problem (3).
Proof Apply Theorem 1 with § = F# (x-p;p), for each fixed =, M = F'(p),
and V = U [resp. V = U* ]. For problem (3) the cone is polyhedral, hence closed. //

Discussion

Often a does not depend on z, in particular if « is a unique vector of Lagrange multipliers.

Theorem 2 also applies to infinite-dimensional problems, such as optimal control in continuous time,
provided that the mentioned cone is assumed to be weak * closed.

Consider the following small examples:



Ezample 1 : The point (0,0) is a Karush-Kuhn-Tucker (KKT) point for:

MIN Fy(z,y) = 2?2 4+ y subject to
Fy(z,y)= —y+ay’ <0, F(z,y)=—1—-z+p322< 0,
with Lagrange multipliers 1 and 0. The function F = (Fy, F,, F3) is invex at (0,0) if functions p(z,y) and
o(wz,y) exist for which:
22> 0p+1o,ay> >0— 10,822 > —1p+ 00 ;
which hold for o > 0 and 3 of either sign. The Lagrangian at (0,0) is:

L(r,y) = a* + 1{ag?) +0(3s)

so that L(z,y) > L(0,0) provided that a > 0. If @ < 0 then L(x,y) is not minimized at (0,0), and invexity
fails, since (—a)y? < o < 2? does not generally hold.
Ezample 2 The point (0,01 is a KKT point for:

MIN F(z,y) = = + 2% + y subject to
Fy(a,y)=—y+ay’ < 0, F(z,y) = ~1 -2+ fa2* < 0, Fy(a,y) = —z < 0,

with Lagrange multipliers 1,0,1. However o F’(0,0) = 0, with o = (1, A, it,v) > (0,0,0,0), only requires that
140 —p—v=0and 1 —A+0u+0v =0, hence A = 1,u + v = 1, so the multiplier i for the inactive
constraint can be any value in [0,1]. The Lagrangian at (0,0) is:

L(z,y) = 2° 4+ 1(ay®) + pu(Bz?) + v(0) > L(0,0)
for each p € [0,1] provided that > 0 and 1+ p8 > 0, thus when 8 > —1. And F is invex at (0,0) when
2?2 > p+o,ay® > —0o,B2% > —p,0 > —p, which hold when o > 0 and (1 + B)z? + ay? > 0, thus when
3> 1.
However, F4 = (Fy, F», F}) is invex when F is invex with respect to U# , which requires p1 = 0, so here
[ is unrestricted.

3. Vector pseudoinvex
A differentiable vector function F' : R™ — R™ is wector pseudoinvez (vpi ) at p with respect to the
convex cone U (Craven, 2001) if:

F(z)—F(p)e —int U = (In: R" x R* = R™) F'(p)n(z,p) € —int U . (9)

Theorem 3 Let F be differentiable; let U = R4 x S be the convex cone in problem (5); for fixed p, denote
E :={x : F(z)— F(p) € — int U}; assume that the cone [F'(p), —F(z) + F(p)] is closed, for each = € E.

Then F' is vector pseudoinvex at p with respect to U if and only if F' is invex at p on E with respect to U.
Proof For a given z € E, denote ¢ := F(z)— F(p) and d := F'(p)n(z,p). If (9) holds, and ¢ € — int U,
then d+ N € — int U for some open ball N. For some € > 0, —ec € N. Hence d — ec € — int U. Conversely, if
c€—int U andd—ec € —int U, then d € — int U— int U = — int U. Hence (9), for a given z, is equivalent
to d — ec € — int U, for some € > 0. Hence, for k = 1/e > 0, (9) is equivalent to:
c— kd € int U C U. (10)

Applying Theorem 1 with M = F'(p),0 = k='(F(z) — F(p)) € — int U, and V = U shows that 1 exists,
satisfying (10), if and only if:

[0 €U, a"F'(p)=0] = ok (F(z) = F(p)) >0 ;

or equivalently if and only if:
[a €U, a"F'(p) =0] = o"F#(x —p;p) >0 . (11)
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From Theorem 2, (11) for each « € E holds if and only if F is invex at p on E with respect to U. //

Remark Thus pseudoinver at a point reduces to invex at the point in a restricted set of directions, This
result explains the scarcity in the literature of examples of functions that are pseudoinvex but not invex.
However, such a function could be constructed by changing an invex function F' at some points x for which

F(z)— F(p) ¢ — int U.

4. Description of V-invex
In (Jeyakumar and Mond, 1992), a vector function F is called V-invez if:

Fi(x) — Fi(p) > vi(w,p)F'(p)n(,p) (12)
holds for each & and each component F; , with some positive scalar coefficients, here denoted v; (x, p). They

showed that property (12) can replace invex, in proving sufficient KKT conditions. Here, p is fixed, and a

characterization is obtained for the property (12), using Theorem 1. For a given z, denote r; := v;(z,p)~" ;

let v =  — p. Then (12) may be written:

8; == (r; — V)F}(p)v + r;FF (vip) > Fl(p)w¥ (v;p). (13)

Applying Theorem 1 with 6 = (61,...,0, ), M = F'(p),V = U gives the equivalent statement:

0#£aeUa"F(p)=01=> ai(ri — DF/(p)v+ »_ a;riF (v,p) > 0. (14)

Theorem 4 Let F be differentiable; let U = R4 x S be the convex cone in problem (5); for each x, assume
that the cone [F'(p), —0], with 6 from (13), is closed, Then F is V-invex at p, with respect to the cone U, if
and only if:

0#aeU", aTF'(p) =0]= Zﬂl(le(p)(L —p)+ Fip (x-p;p) > 0, (15)
for some coefficients 3; = 3;(z) > 0, with
Bi >0 a; >0. (16)

Proof From (14), with §; := ayr;. //

5. Properties of the scale function
Apply now the definition (7) of invex at p, but with cone U# | in the form:

F#(;p) —Muw*(;p) € UL (17)
considering E as a compact subset of R" , with F#(.: p): C(E) = R™, w¥ (.;p): C(E)xC(E) — C(E), and
UA:={bue C(E): (Vt€ E) u (t) € U4}, and define M: C(E,R™ ) — C(E,R™ ) by (Mu)(t) := Mu(t),
with M := F'(p). Define K by (Ku)(z) := K(z)u(z), with K(z) := [M,—60(z)]. Since Theorem 1 is
formulated in abstract spaces, it can be applied to (17). Assume now that F is C*, and express (17) as:

(3o(.) € C'E))8(.) — Mo (.) € U~ (18)
with () :== F#(.;p)/||e = pl1?, and o () := w¥ (:p)/ ||z — p]|*.

The elements of the dual cone U4*are represented by signed vector measures p . Then:

peUN & (e U 0s <pma> = [ ple)sla)d (19)
FE

For each interval I, let ¢ be a smooth approximation to the indicator function of I. Substituting z = cp,0 <
S m(@)cp(z)de, for each ¢ € U* |, hence [, p(z)p(z)dx € UA*. Taking a limit of suitable ¢,

wENT) e U, (20)
If we C(E,R™ ), then



<K'pu,w>= /E < plz), K(z)w(z) > dx (21)

may be approximated by the integral of a step-function, taking constant values on intervals I. With (21), this
approximation has the form [, < q (x),w (z) > dz , where q (x) € K(x)"(U**) . If the cone K ()" (U~
is closed, then (as a limiting case ) {< K*u ,w >: u € U4*} is closed, for each w . Thus K*(U”* is weak *
closed,

Theorem 5 (Property of scale function) Assume that:
(a) the function F is C? and a-invex at each point = € E,
(b) the convex cone K (z)T(U4") is closed, for each z € E,
(¢) [a € U,a"F'(p) = 0,a” F(p) = 0] defines a unique o = &.
Then there exists a scale function w such that:

wt(z = p;p) = ¢(x)|lz — pll?,
with ¢(.) continuous.
Proof Since F is a-invex at each point z, and the cone K (z)”(U**)is closed, Theorem 2 shows that:

(Vo € B)[0 # a(z) e UL a(z)TF'(p) = 0,aTF(p) = 0] = a(x)TF#(z —p;p) >0 (22)

A multiplier p satisfying [0 # p € U4*, < u,M > = 0] is a signed vector measure for which u(I) = &(I)
for each interval I, and this p is unique since « is assumed unique. Hence (22) implies that:

0 £peUY, <u,M=0]=<a,6(.)>0. (23)

Since the cone K (z)T(U4%) is closed, the cone K *(U”*) is weak * closed, by the earlier discussion, Hence

Theorem 1 shows that (18) holds if and only if (24) holds:

0#peUr <u M >=0=<a,0(.)> 0. (24)

Since a(z) = & uniquely, independent of x € E, [, u(x)dx = &|I| for each interval I, where p is the
signed vector measure representing « . Hence (22) is a consequence of (23). Hence (18) holds. Hence a
continuous o(.) exists.  //

Discussion Suppose now that F# (.;p) and w = #(.;p) are defined on spaces C''(E) instead of C(E). If
U* is redefined with elements u € C''(E), then the dual cone U# * is represented by Schwartz distributions
L, which are the weak derivatives of signed vector measures p . If ¢ is a smooth vector function, then
< Y > = — < p, >, leading to p(ENI) € —UA * instead of (20). A similar construction from
(21), using p , shows again that the cone is weak * closed, Hence the invex property (18) also holds with
o(.) € C'(E).

The dependence of the scale function on the point p can also be analysed. The property:

(Vv € X)(Vp € P)F#(vip) > F'(p)™(vip), (25)

where X and P are suitable domains, may be expressed as:

®(p)(v) = LO(p)(v), (26)

in which Q(p)(v) := w#(v;p)/||v||?, ®(p)(v) := F#(v;p)/||v||?, and the linear mapping L is the Cartesian
product of the mappings F’(p), for p € P. This construction may be illustrated by the following case, where
p takes only two values p; and p» :

(B2 [ pl] D] o

If F ic C?, then L is a continuous mapping of C'(E) x C'P) into itself. Theorem (1) may be used to
characterize (25), provided that a certain convex cone is weak * closed. (This can be described, similarly

3



to Theorem 5) . If F is assumed invex at each point p, then it follows that a scale function exists, with
w# (v,p) = ||v|*p(v,p), where p(.,.) is a C* function.

However, it does not follow that F' is convezifiable ; there need not exist any invertible transformation
v, such that F o is convex at all points p.
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